Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Theor Biol ; 478: 161-168, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31254499

RESUMO

In frost hardy plants, the lethal intracellular formation of ice crystals has to be prevented during frost periods. Besides the ability for supercooling and pre-frost dehydration of tissues, extracellular ice formation is another strategy to control ice development in tissues. During extracellular ice formation, partially large ice bodies accumulate in intercellular spaces, often at preferred sites which can also be expandable. In this contribution, the physico-chemical processes underlying the water movements towards the sites of extracellular ice formation are studied theoretically, based on observations on the frost hardy horsetail species Equisetum hyemale, with the overall aim to obtain a better understanding of the physical processes involved in extracellular ice formation. In E. hyemale, ice accumulates in the extensive internal canal system. The study focuses on the processes which are triggered in the cellular osmotic-mechanic system by falling, and especially subzero temperatures. It can be shown that when the temperature falls, (1) water flow out of cells is actuated and (2) "stiff-walled" cells lose less water than "soft-walled" cells. Furthermore, (3) cell water loss increases with increasing (= less negative) turgor loss point. These processes are not related to any specific activities of the cell but are solely a consequence of the structure of the cellular osmotic system. On this basis, a directed water flow can be initiated triggered by subzero temperatures. The suggested mechanism may be quite common in frost hardy species with extracellular ice formation.


Assuntos
Equisetum/fisiologia , Espaço Extracelular/química , Congelamento , Modelos Biológicos , Tamanho Celular , Equisetum/citologia , Equisetum/ultraestrutura , Gelo , Caules de Planta/citologia , Caules de Planta/ultraestrutura , Temperatura , Água
2.
Ann Bot ; 118(2): 207-18, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27268485

RESUMO

BACKGROUND AND AIMS: The stomata of Equisetum - the sole extant representative of an ancient group of land plants - are unique with respect to both structure and development, yet little is known about details of ultrastructure and patterning, and existing accounts of key developmental stages are conflicting. METHODS: We used light and electron microscopy to examine mature stomata and stomatal development in Equisetum myriochaetum, and compared them with other land plants, including another putative fern relative, Psilotum We reviewed published reports of stomatal development to provide a comprehensive discussion of stomata in more distantly related taxa. KEY RESULTS: Stomatal development in Equisetum is basipetal and sequential in strict linear cell files, in contrast with Psilotum, in which stomatal development occurs acropetally. In Equisetum, cell asymmetry occurs in the axial stomatal cell file, resulting in a meristemoidal mother cell that subsequently undergoes two successive asymmetric mitoses. Each stomatal cell complex is formed from a single precursor meristemoid, and consists of four cells: two guard cells and two mesogene subsidiary cells. Late periclinal divisions occur in the developing intervening cells. CONCLUSIONS: In addition to the unique mature structure, several highly unusual developmental features include a well-defined series of asymmetric and symmetric mitoses in Equisetum, which differs markedly from Psilotum and other land plants. The results contribute to our understanding of the diverse patterns of stomatal development in land plants, including contrasting pathways to paracytic stomata. They add to a considerable catalogue of highly unusual traits of horsetails - one of the most evolutionarily isolated land-plant taxa.


Assuntos
Embriófitas/crescimento & desenvolvimento , Equisetum , Traqueófitas , Evolução Biológica , Padronização Corporal , Diferenciação Celular , Embriófitas/ultraestrutura , Equisetum/crescimento & desenvolvimento , Equisetum/ultraestrutura , Microscopia Eletrônica de Transmissão , Mitose , Fenótipo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/ultraestrutura , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/ultraestrutura , Traqueófitas/crescimento & desenvolvimento , Traqueófitas/ultraestrutura
3.
Rev Biol Trop ; 61(3): 1067-81, 2013 Sep.
Artigo em Espanhol | MEDLINE | ID: mdl-24027908

RESUMO

Studies on some reproductive traits in Equisetum species are scarce and valuable to understand species distribution. Therefore, a detailed study of the sporogenesis process and spore development in E. bogotense is presented, with an analysis of the main events during meiosis, maturation of spores, spore wall ultrastructure, orbicules and elaters. Specimens were collected from 500 to 4500 m in Cauca, Colombia. Strobili at different maturation stages were fixed, dehydrated, embedded in resin, and ultra-microtome obtained sections were stained with Toluidine blue. Observations were made with optical microscopy with differential interference contrast illumination technique (DIC), transmission and scanning electron microscopy (TEM and SEM). Ultrathin sections (70-80 microm) for TEM observations were stained with uranyl acetate and lead citrate; while samples for SEM observations, were fixed, dehydrated in 2.2-dimethoxypropane and dried at critical point as in standard methods. Strobili have numerous mature sporangiophores, each one with a peltate structure, the scutellum, bearing five-six sessile sporangia attached to the axis of strobilus by the manubrium. Immature sporocytes (spore mother cells) are tightly packed within the young sporangia. The sporocytes quickly undergo meiosis, by passing the stage of archesporium and give origin to tetrads of spores. The tapetum loses histological integrity during early stages of sporogenesis, intrudes as a plasmodial mass into the cavity of the sporangium, partially surrounding premeiotic sporocytes, and then, tetrads and adult spores. The tapetum disintegrates towards the end of the sporogenesis, leaving spores free within the sporangial cavity. Spores present several cytological changes that allow them to achieve greater size and increase the number of plastids, before reaching the adult stage. Sporoderm includes three layers external to the cytoplasmic membrane of the spore cell, and they are pseudoendospore, exospore and perispore. Viewed with SEM, the exospore is smooth to rugulate, with micro perforations, while the perispore is muriform, rugate, with narrow, delicate, discontinuous, randomly distributed folds delimiting incomplete, irregular areolae, externally covered by of different size, densely distributed orbicules. These orbicules are also found all over the external face and margins of the elaters, while the internal face is smooth and lack orbicules. Viewed with TEM, the exospore is a thick layer of fine granular material, while perispore is a thinner layer of dense, separate orbicules. The elaters are composed by two layers of fibrillar material: an inner layer with longitudinally oriented fibrils and an outer, thicker and less dense layer with fibrils transversely fibrils and abundant, external orbicules. It is suggested that the processes of ontogeny and characters of the sporoderm are relatively constant in Equisetum; however, sporogenesis in E. bogotense is synchronous and this condition has been observed so far only in E. giganteum, a tropical genus also found in Colombia.


Assuntos
Equisetum/ultraestrutura , Esporângios/ultraestrutura , Esporos/ultraestrutura , Colômbia , Equisetum/classificação , Equisetum/embriologia , Esporângios/embriologia , Esporos/crescimento & desenvolvimento
4.
Rev. biol. trop ; 61(3): 1067-1081, sep. 2013. ilus
Artigo em Espanhol | LILACS | ID: lil-688460

RESUMO

Studies on some reproductive traits in Equisetum species are scarce and valuable to understand species distribution. Therefore, a detailed study of the sporogenesis process and spore development in E. bogotense is presented, with an analysis of the main events during meiosis, maturation of spores, spore wall ultrastructure, orbicules and elaters. Specimens were collected from 500 to 4 500m in Cauca, Colombia. Strobili at different maturation stages were fixed, dehydrated, embedded in resin, and ultra-microtome obtained sections were stained with Toluidine blue. Observations were made with optical microscopy with differential interference contrast illumination technique (DIC), transmission and scanning electron microscopy (TEM and SEM). Ultrathin sections (70-80μm) for TEM observations were stained with uranyl acetate and lead citrate; while samples for SEM observations, were fixed, dehydrated in 2.2-dimethoxypropane and dried at critical point as in standard methods. Strobili have numerous mature sporangiophores, each one with a peltate structure, the scutellum, bearing five-six sessile sporangia attached to the axis of strobilus by the manubrium. Immature sporocytes (spore mother cells) are tightly packed within the young sporangia. The sporocytes quickly undergo meiosis, by passing the stage of archesporium and give origin to tetrads of spores. The tapetum loses histological integrity during early stages of sporogenesis, intrudes as a plasmodial mass into the cavity of the sporangium, partially surrounding premeiotic sporocytes, and then, tetrads and adult spores. The tapetum disintegrates towards the end of the sporogenesis, leaving spores free within the sporangial cavity. Spores present several cytological changes that allow them to achieve greater size and increase the number of plastids, before reaching the adult stage. Sporoderm includes three layers external to the cytoplasmic membrane of the spore cell, and they are pseudoendospore, exospore and perispore. Viewed with SEM, the exospore is smooth to rugulate, with micro perforations, while the perispore is muriform, rugate, with narrow, delicate, discontinuous, randomly distributed folds delimiting incomplete, irregular areolae, externally covered by of different size, densely distributed orbicules. These orbicules are also found all over the external face and margins of the elaters, while the internal face is smooth and lack orbicules. Viewed with TEM, the exospore is a thick layer of fine granular material, while perispore is a thinner layer of dense, separate orbicules. The elaters are composed by two layers of fibrillar material: an inner layer with longitudinally oriented fibrils and an outer, thicker and less dense layer with fibrils transversely fibrils and abundant, external orbicules. It is suggested that the processes of ontogeny and characters of the sporoderm are relatively constant in Equisetum; however, sporogenesis in E. bogotense is synchronous and this condition has been observed so far only in E. giganteum, a tropical genus also found in Colombia.


Los estudios sobre aspectos reproductivos son escasos en Equisetum. Por eso, hemos realizado un análisis detallado del proceso de esporogénesis, desarrollo de las esporas, ultraestructura de procesos que tienen lugar durante la meiosis, formación de la pared esporal, orbículas y eláteres de E. bogotense, en especímenes procedentes del Cauca, Colombia. Los estudios se efectuaron mediante microscopía fotónica, electrónica de transmisión (TEM) y de barrido (SEM). Los estróbilos llevan numerosos esporangióforos maduros, cada uno con un escutelo peltado, unido al eje del estróbilo por el manubrio y portador de 5-6 esporangios sésiles. Los esporocitos experimentan meiosis dando origen a tétradas de esporas. El tapete pierde la integridad histológica en las primeras etapas de esporogénesis y rodea los esporocitos premeióticos, posteriormente a las tétradas y finalmente las esporas inmaduras, que experimentan cambios citológicos y de tamaño antes de alcanzar la etapa adulta. El esporodermo de las esporas adultas de E. bogotense consiste de seudoendosporio, exosporio y perisporio. Vistos con MEB, el exosporio de las esporas adultas es liso a rugulado con microperforaciones y el perisporio es muriforme, rugado, con pliegues delicados, estrechos, discontinuos, que se distribuyen al azar y delimitan aréolas incompletas. Externamente el perisporio está cubierto por orbículas, que se forman también en la cara externa y los márgenes de los eláteres. Vistos con TEM, el exosporio es una capa de material granular fino y el perisporio, una capa mucho más delgada con orbículas discretas. Los eláteres están formados por dos capas de naturaleza fibrilar, orientadas longitudinalmente y transversalmente. La esporogénesis en E. bogotense es sincrónica, similar a la de E. giganteum, otra especie de distribución tropical que también crece en Colombia.


Assuntos
Equisetum/ultraestrutura , Esporângios/ultraestrutura , Esporos/ultraestrutura , Colômbia , Equisetum/classificação , Equisetum/embriologia , Esporângios/embriologia , Esporos/crescimento & desenvolvimento
5.
New Phytol ; 190(2): 387-97, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21106036

RESUMO

• The very high rates of convective ventilation reported recently in Equisetum telmateia (up to 120 cm(3) min(-1); internal wind speed, 10 cm s(-1)) prompted this study of a further eight species for the presence or absence of convection and the possible reasons for this. • Convection rates were examined in relation to anatomical pathways, internal resistance to applied pressurized gas flow and stomata. • Only species with interconnecting cortical aerenchyma in branches (when present), shoots and rhizomes induced convection. Rapid humidity-induced convection (HIC) occurred in E. palustre (up to 13 cm(3) min(-1)), with slower rates in E. × schaffneri and E. ramosissimum (≤ 6 and 3 cm(3) min(-1), respectively). Excised shoots of E. hyemale and E. fluviatile showed the potential for HIC (≤ 0.5 and 0.15 cm(3) min(-1), respectively), but not into the rhizomes. High rates were linked to low internal gas flow resistance. No convection was detected in E. scirpoides, E. sylvaticum or E. arvense due to the extremely high resistance to pressure flow, for example, from intercalary meristems and, in the last two, to nonaerenchymatous branches. • Of the nine Equisetum species studied so far, four showed through-flow convection; the other species must rely solely on diffusion for underground aeration in wet soils.


Assuntos
Convecção , Equisetum/metabolismo , Pressão , Aerobiose , Equisetum/anatomia & histologia , Equisetum/ultraestrutura , Modelos Biológicos , Caules de Planta/anatomia & histologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/ultraestrutura , Reologia , Especificidade da Espécie
6.
Anal Bioanal Chem ; 376(4): 512-7, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12732920

RESUMO

Silicified regions in the stem and leaf of the horsetail Equisetum arvensewere studied by scanning and transmission electron microscopy. The silica was present as a thin layer on the outer surface with variation in the size of this layer depending on the part investigated. There was a dense arrangement of silica spheres with some density fluctuations. A loose arrangement of silica particles with variation in their size was found beneath this dense arrangement suggesting the agglomeration of silica. An electron diffraction pattern showed the presence of amorphous silica, with the short range order being comparable to that of silica from other chemical sources. The medium range order shows the presence of silica with a high inner surface. SAXS measurements correlate with the particle size observed in TEM, and provide values for surface fractals. A new method of plasma ashing to remove the organics is also described.


Assuntos
Equisetum/ultraestrutura , Dióxido de Silício/análise , Microscopia Eletrônica , Folhas de Planta/ultraestrutura
7.
J Math Biol ; 42(3): 261-89, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11315315

RESUMO

We discuss a dynamical mathematical model to explain cell wall architecture in plant cells. The highly regular textures observed in cell walls reflect the spatial organisation of the cellulose microfibrils (CMFs), the most important structural component of cell walls. Based on a geometrical theory proposed earlier [A. M. C. Emons, Plant, Cell and Environment 17, 3-14 (1994)], the present model describes the space-time evolution of the density of the so-called rosettes, the CMF synthesizing complexes. The motion of these rosettes in the plasma membrane is assumed to be governed by an optimal packing constraint on the CMFs plus adherent matrix material, that couples the direction of motion, and hence the orientation of the CMF being deposited, to the local density of rosettes. The rosettes are created inside the cell in the endoplasmatic reticulum and reach the cell-membrane via vesicles derived from Golgi-bodies. After being inserted into the plasma membrane they are assumed to be operative for a fixed, finite lifetime. The plasma membrane domains within which rosettes are activated are themselves also supposed to be mobile. We propose a feedback mechanism that precludes the density of rosettes to rise beyond a maximum dictated by the geometry of the cell. The above ingredients lead to a quasi-linear first order PDE for the rosette-density. Using the method of characteristics this equation can be cast into a set of first order ODEs, one of which is retarded. We discuss the analytic solutions of the model that give rise to helicoidal, crossed polylamellate, helical, axial and random textures, since all cell walls are composed of (or combinations of) these textures.


Assuntos
Parede Celular/ultraestrutura , Equisetum/ultraestrutura , Modelos Biológicos , Plantas Medicinais , Celulose/ultraestrutura , Microfibrilas/ultraestrutura , Microscopia Eletrônica , Raízes de Plantas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...